Original Article

Real World Data-Driven Transformation in Healthcare & Life Science: Evidence-Based Analytics, Machine Learning and AI Applications

Mayur Katariya¹, Snehal Tiwari²

¹Senior Delivery Solution Architect, Databricks, CA, USA. ²University of Southern California, CA, USA.

Received: 18 July 2023

Revised: 30 August 2023

Accepted: 13 September 2023

Published: 30 September 2023

Abstract - High demand for real-time and effective patient outcome-centered healthcare systems is increasing globally. Therefore, there is a pressing need to counter inefficiencies and advance care delivery to promote positive health outcomes. Real-World Data (RWD) and evidence (RWE) have a tremendous opportunity and potential to improve patient outcomes. Understanding how patients use prescribed medication accurately guides stakeholders across the healthcare and life science system in making lifesaving, real-time choices regarding patients' health. RWD identifies inefficiencies across the healthcare environment and fills gaps in information silos among the stakeholders throughout the healthcare & life sciences ecosystem. Also, RWD is being used by pharmaceutical and life sciences firms at all phases of the drug development lifecycle, from initial discovery to post-market. RWE can bring crucial empirical data to clinical investigations that a standard study cannot.

This paper extensively researches the Real-World Synthea dataset, delves into the intricate process of generating patient data across various healthcare interaction points, offering a comprehensive view from the patient's perspective and showcases the different use cases that can be derived across the healthcare and life science systems such as patient demographics, treatment rates, medication adherence, comorbidity analysis, patient risk prediction, and disease progression tracking to improve patient outcomes. These use cases illustrate how RWD, when integrated with advanced analytics and artificial intelligence (AI), can drive informed decision-making, personalized patient care, and drug research and development advancements. It also incorporates actionable solutions using Medallion Architecture from Databricks Lakehouse. The integration of additional data sources, such as demographic data, genomics, claims data, and social determinants of health, is presented to enhance insights and improve patient outcomes. It concludes by emphasizing the profound impact of real-world data and the application of data analytics, machine learning, and artificial intelligence (AI) on reshaping healthcare systems, enhancing research endeavors, and ultimately paving the way for a future characterized by more efficient, patient-centric, and data-driven healthcare to improve patient outcomes and drive faster innovation across the drug lifecycle, leading to more promising prospects for patients and stakeholders alike.

Keywords - Artificial Intelligence, Data Analytics, Real World Evidence, Real World Data, Databricks Lakehouse, Healthcare, Synthea Data, Cloud.

1. Introduction

Real World Evidence defines the observational data collected from Raw-World Data such as electronic health records (EHR), disease and product registries, claims, patientgenerated data, IoT sensors, wearables, medical imaging, and any piece of data acquired from other sources that can illuminate the effects of drugs used by actual patients, in real life such as IoT, research blogs and social media platforms. Understanding how patients use drugs accurately guides stakeholders across the healthcare system in making lifesaving real-time choices. Real-World data identifies inefficiencies across the healthcare environment and fills gaps in information silos among the stakeholders throughout the healthcare system.[1] Some stakeholders across the health systems are patients, payors, manufacturers, providers, and government entities. RWD can also provide essential insights to support more valuable care and propel better health outcomes among patients. The Food and Drug Administration (FDA). [2] states three primary uses of RWE. Firstly, it monitors drug post-market safety and the adverse effects before making regulatory decisions. Secondly, healthcare providers use RWE to support care decisions and create guidelines, strategies, and tools to assist clinical practice. Moreover, life sciences organizations use the information to aid clinical trial designs and observational studies to propel

advanced drug discovery and patient care approaches. Additionally, payors benefit from RWE to assess the outcomes of treatment. Research has recently discovered that combining RWD and artificial intelligence can significantly help healthcare. This duo can assist in the optimization of clinical trial design and improve patient recruitment. AI can transform RWD into actionable information and propel better decision-making concerning medicinal products.

Some use cases across the drug lifecycle at the high level encompass.

1.1. Pre-clinic Research and Drug Discovery

RWE can help aid pre-clinical research in identifying the prevalence of the disease, the disease history, and possible treatment patterns that can lead to identifying unmet needs and the potential development of a new drug.

1.2. Clinical Trials Design and Patient Recruitment

RWE can be used to design clinical trials, optimize patients' selection criteria, and decide potential trial site areas after analyzing real-world patients' characteristics.

1.3. Market Authorization and Access

RWE can propel regulatory approval and help define the most efficient pricing model technique.

1.4. Comparative Effectiveness Research

RWE makes it easy to compare medical intervention strategies in real-world settings. It can help measure drug efficacy and safety across diverse patient populations and help in effective clinical decision-making and treatment guidelines.

1.5. Patient Safety Monitoring

RWE plays a crucial role in post-marketing surveillance of drugs and medical devices. It helps detect and evaluate adverse events, monitor long-term safety profiles, and identify potential drug interactions or risks not captured during clinical trials. This can also aid pharma companies in quickly identifying the risks/benefits of their medicines.

1.6. Patient Safety and Value Impact

Efficient and scientifically rigorous comparative safety/effectiveness analysis.

1.7. Health Economics and Outcome Research

RWE enables easy evaluation of the economic impacts, cost-effectiveness and quality of life outcomes associated with different health treatments and interventions, which is very valuable for payers, policymakers and providers when allocating resources and coverage.

1.8. Regulatory Decision Making

RWE is used by regulators to supplement traditional clinical trial data. It supports labeling decisions, promotes post-approval commitments and confirmatory trials, and aids in evaluating the actual benefits and dangers of medicinal products.

1.9. Real-Time Monitoring and Patient Engagement

RWE can be leveraged for real-time monitoring of patients using wearable devices, mobile apps, or telemedicine. It enables remote patient monitoring, early detection of adverse events, and personalized interventions, improving patient engagement and outcomes. Overall, Real-World Evidence plays a vital role in generating insights into the realworld performance of treatments, optimizing healthcare and life sciences decision-making, and improving patient outcomes. It complements traditional clinical trial data and offers a more comprehensive understanding of how interventions work in diverse patient populations and realworld settings.

This article showcases how we can perform data analytics on RWD datasets like Synthea datasets - synthetic, realistic (but not real), patient data, and associated health records using a data platform like Databricks Lakehouse for multiple use cases. Databricks Lakehouse is a unified analytics platform that combines the best of both worlds - data warehouse and data lakes. The lakehouse can help combine an organization's RWD into one large and collaborative platform that supports most analytics and AI capabilities. By bringing health-related data in one place, organizations can effectively perform analytics to help inform data-driven decisions to comprehend the elements influencing positive and adverse health outcomes.

2. Data Description and Process Flow

2.1. Describe Data: What is Synthetic Data?

Gonzales et al. [3] define synthetic data as statistically generated microdata created by manipulating original data. Synthetic data upholds data effectiveness while guaranteeing the confidentiality and privacy of information. Synthetic data in healthcare can be an EHR dataset consisting of patientsensitive data swapped with fake information to prevent replication and patient de-identification.

Below are some potential uses for synthetic data: 2.1.1. Hypothesis, Methods, and Algorithm Testing

Synthetic data can reflect on the format and structure of RWD. Information obtained is crucial in exploring the variables, assessment of data set feasibility, and hypothesis testing.

Additionally, knowledge of algorithms is critical for developing machine learning and AI. Information from the synthetic data is valuable for the robustness of the algorithms and testing of different methods and hypotheses of healthcare practices.[3]

Describe Data – What?

Data Summary : Synthetic Health data provides Electronic Health Records across patients and providers

Data Table	Summary	File Size(Bytes)	File Type	Data Statistics (# of records)
Allergies	Patient Allergy Data	639154	CSV	5453 records
Care plans	Patient Careplan Data	6271344	CSV	32743 records
Conditions	Patient Condition or Diagnosis	10703272	CSV	84421 records
Encounters	Patient Encounters data	86554610	CSV	393234 records
Imaging_studies	Patient Imaging Metadata	2041068	CSV	8873 records
Immunization	Patient Immunization data	19317094	CSV	144874 records
Medications	Patient Medication Data	19424734	CSV	109142 records
Observations	Patient Observations(Vitals, Lab)	310288424	CSV	2193029 records
Organization	Provider organization including Hospitals	14769	CSV	119 records
Patients	Patient Demographic data	2355743	CSV	11737 records
Procedures	Patient procedure data (surgeries)	50294253	CSV	327171 records
Providers	Clinicians, HCPs providing patient care	18031	CSV	119 records

Executive Summary: Synthetic Health data provides a good longitudinal data across patients Birth to Death lifecycle that can be leveraged for advanced analytics

Fig. 1 Synthetic health data presented as EHR record

2.1.2. Public Health Preparedness

Synthea data can be used to simulate disease outbreaks and assess the spread of the diseases. The information can be utilized to evaluate public health's effectiveness and prepare and develop response evidence-based emergency strategies.[3]

2.1.3. Medical Education and Training

Patient cases might be created using synthetic data for medical education and training. In a controlled setting, medical students and healthcare workers can practice clinical decision-making, learn about uncommon diseases, and improve their diagnostic and therapeutic abilities. [3]

2.1.4. Health Technology Development

Synthea data can be used to create and test electronic tools like Electronic Health Records (EHRs), medical imaging algorithms, and predictive analysis models. Similarly, it can play a vital role in creating decision support systems. [4]

For this article, we have used a Synthea-generated dataset and showcased how it can be used for supporting different RWD Use cases[5]. Synthea datasets provide good longitudinal data across patients' Birth to Death lifecycles that can be leveraged for advanced analytics. The figure above represents synthetic health data presented as EHR records. The Synthea dataset contains different data tables, including allergies, encounters, diagnostics tests, observations, etc. It is important to note that synthetic data is not the actual data of the patients. [6] However, they are statistically modified data that may resemble the original patient's information. The above table provides more quantitative details about different tables' data size details like file type, size, and statistics. Moreover, synthetic data includes tables representing different aspects of simulated healthcare information.

In the below section, we have described in detail about the data included in each of the tables along with some sample data view of all the tables after loading it into databricks for analysis.

Patient Table: This table contains demographic information about simulated patients, such as their unique identifier, gender, date of birth, race and Ethnicity.

Encounter Table: The encounter table captures patient encounters with healthcare providers. It includes details such as the encounter ID, patient ID, encounter type (e.g., outpatient, inpatient), encounter reason, date and time of encounter, and associated provider information.

Condition Table: This table stores information about the medical conditions or diagnoses affecting each patient.

Observation Table: The table contains recorded observations or measurements related to a patient's health. Measurements and observations made during patient visits may be recorded on the observation table. This may comprise measurements such as weight, temperature, blood pressure, heart rate, and any pertinent background data regarding the observations.

Medication Table: This table tracks the medications prescribed or taken by patients. It includes the medication ID, patient ID, medication name, dosage, start and end dates of medication use, and any related instructions or notes. Also, information on medications given to patients would be kept in this table.

It might contain details on the prescribed drug (name, dosage, frequency), the doctor who prescribed it, the start and stop dates, any adverse reactions that have been documented, and perhaps interactions with other drugs.

Procedure Table: This table captures information about medical procedures performed on patients. Records of patient medical operations would be kept in the procedure table. The type of procedure, the date and time it was carried out, the medical staff that assisted, any pre- or post-procedure instructions, and any complications or notes that could be included.

Allergy Table: The allergy table records information about known allergies or adverse reactions that patients may have. It includes the allergy ID, patient ID, allergy type (e.g., medication, food), specific allergen, reaction description, and related details or severity.

Immunization Table: This table contains data on immunizations administered to patients. It includes details

such as the immunization ID, patient ID, immunization name, date of administration, and any associated notes or additional information. Also, data from patient immunization records, including information on vaccinations received, dates of administration, type of immunization, dosage, and any pertinent remarks, are likely to be kept in this table.

Organizations table: This table contains information on healthcare organizations providing patient care. It contains information on medical centers, clinics, hospitals, and other healthcare organizations. Names, locations, contact details, and provider affiliations of the organizations can be found.

Providers table: This table includes details regarding medical specialists like physicians, nurses, therapists, and other healthcare providers. The providers' names, specialities, license details, and contact information can all be found in this data.

Care Plans Table: The data in this table pertains to the patient care plans that have been developed. Care plans list the prescribed medications, procedures, and tasks healthcare professionals perform for a patient's condition. It might contain information on the kind of treatment, prescription drugs, sessions with therapists, and suggested follow-up appointments.[7]

Imaging Table: This table holds information on diagnostic imaging tests like X-rays, MRIs, CT scans, and ultrasounds. It contains information concerning the patient, the imaging method, the date and time of the procedure, and any conclusions or diagnoses drawn from the images.

Pa	atients					
-	databricks Q Search data, notebooks, rece	ts, and more X + P		_	#	0
D	Data Explorer unity-catalog-demo	Provide Feedback [2			+ Add Browse DBFS	⊘aw_tpch (do no Serverless 2XS v
€ \$	Data synt	his_healthcare.synthetic_patient_data.patients A Tops: Add tags Comment: Star 154.6K8, 119e	Insights Quality			: Create v
â	claims claims_transactions	Id BIRTHDATE DEATH	DATE SSN DRIVERS PASSPORT	PREFIX FIRST	LAST SUFFIX MAIDE	N MARITAL RACE ETHNICITY GEN
丝	conditions devices	e14ee90a-e822-e800-b7b3-a0b00ee25149 2014-10-15T00:00:00	999-22-6608		Grimes	white nonhispanic M
	encounters	99beafca-17e6-a703-5d44-3a93be06ae3a 2011-08-21T00:00:00	999-90-3895	Antoine	Walker	white nonhispanic M
	imaging_studies immunizations	bff02ae2-c396-ff4b-7f7b-065c420bd636 2010-01-01T00:00:00	999-85-9830	Deangelo	Kuphal	white nonhispanic M
	medications	cad00c05-9a72-d272-18dc-2f0a77feaa63 2005-03-19T00:00:00	999-48-9706 S99983177	Fletcher	Daniel	white nonhispanic M
	m organizations	4a2b98c7-3eb1-ef2f-db25-7217c4b6aeda 2011-08-09T00:00:00	999-43-4816	Mark	Buckridge	black nonhispanic M
	patients payer_transitions	bb701f5b-cc21-bfc7-fdb7-defb103cbbe9 1982-01-09T00:00:00	999-64-3258 \$99948235 X67280351	X Mr. Efren	Rempel	M white nonhispanic M
	payers procedures	10247fa0-6902-003a-fea8-e4ee6e0b9821 1976-02-19T00:00:00	999-14-1782 S99987109 X16954910	X Mr. Malik	Williamson	M white hispanic M
	procedures	a627955c-10b0-737e-88c2-e635dbf73511 1990-11-05T00:00:00	999-42-4103 S99935894 X82542107	X Mrs. Solange	Kozey Feil	M asian nonhispanic F
	I supplies	38643975-2cd3-4e96-6814-40fa9a7a9655 1994-12-11T00:00:00	999-92-8747 \$99925291 X16181989	X Mrs. Mariel	Ebert Herma	n M white nonhispanic F
		5cd74a6f-b0b7-7662-2bd6-c955b57318a8 2004-08-28T00:00:00	999-67-7203 S99934154	Dwayne	Robel	asian nonhispanic M
		7e6432a2-4553-3b12-0847-d6c72fcf430d 1987-02-05T00:00:00	999-24-5431 \$99933774 X34889450		Ratke	M white nonhispanic M
		7b33e063-8557-18b9-1c88-14f116984069 1965-01-02T00:00:00	999-85-2596 \$99997240 X42762532		Jacobson	M white nonhispanic M
		e56bbbd1-0cd4-0fbd-1e19-1c9a5305c3ed 2009-08-13T00:00:00	999-27-7339	Kamala	Sipes	white nonhispanic F

Fig. 2 Patient table sample view on databricks

Encounters				- 14
Catalogs > his_healthcare > synthetic_patient_data >				Create 🛩
Owner: Popularity: Size	2.5MiB; 3 files Last Updated: 10 months ago			
Tags: Add tags Comment:				
Columns Sample Data Details Permissions Histo	nu Linean Indiality Cuality			
Cours Sample Data Details Permissions Histo	ry Lineage insignes Quality			
Q Filter columns.				
Column	Туре	Comment	Tags	
ld	string	۵	O	
START	timestamp	۲	۲	
STOP	timestamp	۲	۲	
PATIENT	string	۲	۲	
ORGANIZATION	string	۲	۲	
PROVIDER	string	۲	۲	
PAYER	string	۲	۲	
ENCOUNTERCLASS	string	٢	۲	
CODE	bigint	D	٥	
DESCRIPTION	string	Ø	۲	
BASE_ENCOUNTER_COST	double	Ð	۲	
TOTAL_CLAIM_COST	double	۲	O	
PAYER_COVERAGE	double	۲	۲	
REASONCODE	bigint	©	O	
REASONDESCRIPTION	string	۲	۲	
		2 0		

Fig. 3 Encounter table Sample Data view in Databricks

	ions				
Contes Insuetour - Vertelligenericki - El his heathcare synthetic patient, data conditi Orive Presenty - El Sin 13 Page Adriage Convert Contes Sergis bat Deals Permisson Henry	MIL 1 The Last Updated: 10 months ago				-
START	STOP	PRIMI	ENCOUNTER	CODE	DESCRIPTION
2013-02-12720-00:00		90beafca: 17ed-s703-5444-2x80be06ac3a	1746ec25-4797-633c-9cc1-1372e8075ec2	24379001	Aujo de natilis
2019-10-27100-00:00	2019-11-16780-08-00	90beafca: 17eb a703 5644-3x80be08ac3a	822c4800-75ae-8018-44c5-181.0x8221e78	444814009	Viral sinualis (disorder)
2021-04-10700-00-00	2021-05-12780:00:00	90brafca-17e0-a703-6444-3x80be08ac3a	1c8443c6-7cae 32e8-ecac-785e77482993	444814009	Viral sinusitis (disorder)
2021-07-08120-00:00	2021-07-29780-00:00	bf122ac2<390-846-305-085c4205d030	b35e4489-1xd0-67eii-04cc-01acilee1ba40	283371005	Lacension of forearen
2019-04-27100-00:00	2019-05-06180:00:00	cad00c06-8x72-4272-18dc-210x779ead3	1cdx882-88ad-0408-8823-dec564459543	10509002	Acute branchills (disorder)
1999-02-27100-00:00		bb70110k-cc21-562-662-defc123cbbe9	5db/ex80-d009-33ds-53da-4ax770042dc4	162968000	Hui activity invivorment (Buding)
2008-03-04700-00:00		bb701f3b-cc21-bfc7-ddc7-ddc1123c5be9	32c0bb9+ca45-bfaf-8cb3-50531673d306	224298080	Received higher education (Inding)
2000-03-04700-00:00	2001-03-10780-00:00	bi?0156-cc21-562-682-defu123cbbe9	32x00804 ca45 6/a/ 6x89 505376734206	162903087	Full-time employment (Inding)
2008-03-04700-00:00	2007-03-17100-00-00	66701156-cc21-667-6867-defc1133cbbe9	32x0864 sa45 6/a/ 6x83 505376734206	73595404	Dess (Fedag)
2001-03-10100-00:00	2004-03-13780-00:00	bb701186-cc21-bfc7-ddc7-ddc1123cbbe9	0xa1215ir-8897-5a15-e443-29880802b49	162903067	Full-time employment (Finding)
2010-03-20100-00:00	2010-03-20100-00:00	bb701156-cc21-662-4dk2-defc1132cbbe9	1758674b-6775-672a-2552-aclumie0d5e8	162903087	Full-time employment (Inding)
2010-03-20100-00:00		bb70118k-cc21-bfc7-defc123cbbe9	17546742-6775-672a-2552-aclaste0d5e9	73595000	Stress (Inding)
2013-02-23120-00:00	2016-03-26180.00100	bb70115i-cc21-bfc7-8dk7-defc113cbbe9	42101280-doil1-1040-a001-6800x20x2340	162903087	Full-time employment (Inding)
2014-03-28120-00:00	2018-10-06780.00100	bit701f3b-cc21-ofc7-ditc7-dirtc123cbbri7	6421ed/3-6263-383e-7x29-x288454x36/3	162903087	Full-time employment (Inding)
2014-03-28120-00:00	2016-03-30780:00:00	bb701f3b-cc21-bfc7-fdb7-defc113cbbe9	6421ed/3-6x83-383e-7c29-c286454x06/3	422650009	Social isolation (Finding)
2018-10-06720-00:00	2010-03-20180:00:00	bit 701106-cc21-04c7-68c7-68c7-68c123cbbet2	199:5964-1670-a430-3xab-154x1010048;	162904021	Part Sine anylognent (Ending)
2019-03-30100-00:30		bit701f3ir-cc21-ofc2-ditc2-defc1123cbbe9	1628649F1878-4482-0x91-00x788207208	162903087	Full-time employment (Inding)
2021-04-05720-00:00	2021-04-20180-00-00	0070193-cc21-0427-6807-6801133cbbe9	905208c-7ux0-d280-17x1-d28c5c8560	444814009	Viral sinusilis (disorder)
1994-04-14700-00:00		1124/1al-1902-003z-fea8-e4eefe03/9821	3ce5518a-85c2-f44c-7aa3-a2iet3id1400d	105531004	Housing unsatisfactory (Ending)
1994-04-14000.0000		12247ia0-0902-003a-fea8-e4er0ix00821	3ce5518z-85c2-f44c-7aa3-a23et3d1400d	6251080176909	Reprived certificate of high school equivalency (Inding)

	rvations							
Catalogs > his_healthcare > synth	ic_patient_data >							Create 👻
Owner:	Popularity: Size: 1.1MB, 8 files Last Updated: 10 months ag	>						
Tags: Add tags								
Comment: Add comment								
Columns Sample Data Deta	ils Permissions History Lineage Insights Quality							
DATE	PATIENT	ENCOUNTER	CATEGORY	CODE	DESCRIPTION	VALUE	UNITS	TYPE
2019-09-25107:55:31	e14ee90a-e822-e800-b7b3-a0b00ee25149	34f254f7-3d41-e1ed-0036-fd958b2094e8	vital-signs	8302-2	Body Height	114.0	cm	numeric
2019-09-25T07:55:31	e14ee90a-e822-e800-b7b3-a0b00ee25149	34f254f7-3d41-e1ed-0036-fd958b2094e8	vital-signs	72514-3	Pain severity - 0-10 verbal numeric rating [Score] - Reported	0.0	(score)	numeric
2019-09-25107:55:31	e14ee90a-e822-e800-b7b3-a0b00ee25149	34f254f7-3d41-e1ed-0036-fd958b2094e8	vital-signs	29463-7	Body Weight	20.3	kg	numeric
2019-09-25707:55:31	e14ee90a-e822-e800-b7b3-a0b00ee25149	34f254f7-3d41-e1ed-0036-fd958b2094e8	vital-signs	39156-5	Body Mass Index	15.6	kg/m2	numeric
2019-09-25707:55:31	e14ee90a-e822-e800-b7b3-a0b00ee25149	34f254f7-3d41-e1ed-0036-fd958b2094e8	vital-signs	59576-9	Body mass index (BMI) [Percentile] Per age and gender	57.1	56	numeric
2019-09-25707:55:31	e14ee90a-e822-e800-b7b3-a0b00ee25149	34f254f7-3d41-e1ed-0036-fd958b2094e8	vital-signs	8462-4	Diastolic Blood Pressure	79.0	mm(Hg)	numeric
2019-09-25707:55:31	e14ee90a-e822-e800-b7b3-a0b00ee25149	34f254f7-3d41-e1ed-0036-fd958b2094e8	vital-signs	8480-6	Systolic Blood Pressure	118.0	mm(Hg)	numeric
2019-09-25707:55:31	e14ee90a-e822-e800-b7b3-a0b00ee25149	34f254f7-3d41-e1ed-0036-fd958b2094e8	vital-signs	8867-4	Heart rate	80.0	Imin	numeric
2019-09-25707:55:31	e14ee90a-e822-e800-b7b3-a0b00ee25149	34f254f7-3d41-e1ed-0036-fd958b2094e8	vital-signs	9279-1	Respiratory rate	14.0	įmin	numeric
2019-09-25T07:55:31	e14ee90a-e822-e800-b7b3-a0b00ee25149	34f254f7-3d41-e1ed-0036-fd958b2094e8	survey	72166-2	Tobacco smoking status NHIS	Never smoker		text
2020-09-30T07:55:31	e14ee90a-e822-e800-b7b3-a0b00ee25149	3a1a5622-70bd-aecc-09b8-c67c62fbc7c2	vital-signs	8302-2	Body Height	121.0	cm	numeric
2020-09-30T07:55:31	e14ee50a-e822-e800-b7b3-a0b00ee25149	3a1a5622-70bd-aecc-09b8-c67c62fbc7c2	vital-signs	72514-3	Pain severity - 0-10 verbal numeric rating [Score] - Reported	3.0	(score)	numeric
2020-09-30T07:55:31	e14ee90a-e822-e800-b7b3-a0b00ee25149	3a1a5622-70bd-aecc-09b8-c67c62fbc7c2	vital-signs	29463-7	Body Weight	23.6	kg	numeric
2020-09-30707:55:31	e14ee90a-e822-e800-b7b3-a0b00ee25149	3a1a5622-70bd-aecc-09b8-c67c62fbc7c2	vital-signs	39156-5	Body Mass Index	16.1	kg/m2	numeric
2020-09-30T07:55:31	e14ee90a-e822-e800-b7b3-a0b00ee25149	3a1a5622-70bd-aecc-09b8-c67c62fbc7c2	vital-signs	59576-9	Body mass index (BMI) [Percentile] Per age and gender	69.6	%	numeric
2020-09-30707:55:31	e14ee90a-e822-e800-b7b3-a0b00ee25149	3a1a5622-70bd-aecc-09b8-c67c62fbc7c2	vital-signs	8462-4	Diastolic Blood Pressure	79.0	mm(Hg)	numeric
2020-09-30T07:55:31	e14ee90a-e822-e800-b7b3-a0b00ee25149	3a1a5622-70bd-aecc-09b8-c67c62fbc7c2	vital-signs	8480-6	Systolic Blood Pressure	114.0	mm(Hg)	numeric
2020-09-30T07:55:31	e14ee90a-e822-e800-b7b3-a0b00ee25149	3a1a5622-70bd-aecc-09b8-c67c62fbc7c2	vital-signs	8867-4	Heart rate	63.0	Imin	numeric
2020-09-30707:55:31	e14ee90a+e822-e800-b7b3-a0b00ee25149	3a1a5622-70bd-aecc-09b8-c67c62fbc7c2	vital-signs	9279-1	Respiratory rate	16.0	Jmin	numeric
2020-09-30107:55:31	e14ee90a-e822-e800-b7b3-a0b00ee25149	3a1a5622-70bd-aecc-09b8-c67c62fbc7c2	laboratory	6690-2	Leukocytes [#/volume] in Blood by Automated count	6.8	10*3/uL	numeric

Fig. 5 Observation table sample data view

Medications

Owner		🔲 🧪 Popularity: 🖉 Size: 1,7688, 3 files 1	Last Updated 10 months ago									
Tegs: Add	i tags											
Comment:												
Columns	Sample Data De	tale Permissions History Lineage	Insights Quality									
ST	OP	PATIENT	PAYER	ENCOUNTER	CODE	DESCRIPTION	BASE_COST	PAYER_COVERAGE	DISPENSES	TOTALCOST	REASONCODE	REASONDESCRIPTION
22:09		990eafca-17a6-a703-5644-3a93be06ae3a	b1c426d8-4/07-31e0-9010-68/fa6f/8c76	9a7522c1-da1d-e376-effe-80b3f74f1744	665078	Loratadive 5 MG Chevable Tablet	4.86	0	116	563.76		
22:09		99bealca-17e6-a703-5d44-3a93be06ae3a	b1c426d6-4f07-31e0-9010-68ffa6ff8c76	9a7522c1-da1d-a376-offe-80b3f74f1744	1870230	NDA020800 0.3 ML Epinephrine 1 MG/ML Auto-Injector	256.03	0	116	29792.28		
0.06 20	21-07-29717:10:06	bf102ae2-c396-ff4b-7f7b-065c420bd636	6e2f1a2d-27bd-3701-8c08-dae202c58832	b35e4469-1ed0-67ed-64cc-01cc6ee1ba40	313820	Azetamingphen 160 MG Chewable Tablet	2.37	0	1	2.37		
16.14 20	19-05-07101-36-14	cadD0c05-9a72-d272-18dc-2f0a77feaa63	d47b3510-2895-3b70-9897-342d881c769d	1ci0a652-96ad-0403-3623-dec564459543	1043400	Acetaminophen 21.7 MG/ML / Dextromethorphan Hydrobromide 1 MG/ML / doxylamine succinate 0.417 MG/ML Oral Solution	4.73	0	1	4.73	10509902	Acute bronchitis (disord)
33.41 20	21-04-30718:33:41	bb701f5b-cc21-bh:7-klts7-cieth103cbbe9	04796ec3-6215-35eb-0608-9984a363a444c	99%208c-7ba0-d293-17e1-d3bc0cdfw55f	562251	Amosicilin 250 M0 / Clavulanate 125 M0 Oral Tablet	26.64	0	1	26.64	444814000	Viral sinusitis (disorder)
20:36		38643975-2cd3-4e96-6014-401x0o7x9655	4d711545-a6a9-5c39-6242-14d25e196a8d	1e3477c7-8bcf-8583-241c-63d2ecf3ff25	665078	Loratadine 5 MQ Chewable Tablet	3.09	0	319	985.71		
20-36		38643975-2cd3-4e96-6814-401a9a7a9655	4d711845-a6a8-3c39-0242-14d25ef86a8d	1e3477c7-8bcf-d563-241c-63d2ecf3ff25	1870230	NDA020800 0.3 ML Epinephnine 1 MS/ML Auto-Injector	166.08	0	319	52979.52		
43-34 20	14-02-09110-43-34	38643975-2cd3-4e96-6814-40189a7a9655	b1c426d6-4f07-31e0-90f0-68ffa6ff8c76	419ad/d9-6dc7-ca03-b604-538b4f8aa2c8	314076	Issingeri 10 MG Oral Tablet	0.01	0	371	3.71	59621000	Hypertension
13:34 20	14-02-09716-43-34	38643975-3cd3-4e96-6814-40\a9a7a9655	b1c428d6-4/07-31w0-9010-6885w68/8c76	£19wffd9-6dc7-ca03-b604-536b499wa2s8	308136	artLODIPine 2.5 MD Oral Tablet	0.01	0	371	3,71	89621000	Hypertension
43:34 20	14-02-09716-43-34	38643975-2cd3-4e96-6814-40189a7a9655	4d71f845-a6a9-3c30-b242-14d25ef86a8d	ebf3768d-8580-de1f-c54e-8c75ddc1b18	314076	Integeri 10 MS Crai Tablet	0.01	0	1	0.01	69621000	Hyperlansion
43.34 20	14-02-09716:43:34	38643975-2cd3-4e96-6814-401a9a7a9855	4d711845-a6a9-3c20-b242-14d25e486a8d	eb/3768d-8580-de1f-c54e-8c75dddc1b18	308136	amSCOIPine 2.5 MG Oral Tablet	0.01	0	a	0.01	59621000	Hypertension
43.34 20	14-02-09710:43:34	38643975-2cd3-4e96-6014-40ta9a7a9655	4d71f846-a6a9-3c30-b242-14d25et86a0d	ca46b5e9-7444-2d06-f2b9-5b3b58466d84	1049825	Acataminophen 325 MG / Oxycodone Hydrochloride 10 MG Oral Tablet (Percecet)	129.94	0	3	389.82		
43-34 20	15-02-15716:43:34	38643975-2cd3-4e96-6814-40\a8u7a9655	4d711845-a6a8-3c39-b242-14d25e186a8d	2791xb9a-2562-b42f-88ad-1205811ccf15	1049625	Acetaminophen 325 MG / Oxycodone Hydrochloride 10 MG Oral Tablet (Percocel)	125.94	0	3	389.82		
43.54 29	15-02-15716:43:34	38043975-2cd3-4e96-6814-40%007a9655	46711945-a6a9-3c30-b242-14625e100a8d	2791eb9a-2562-b42f-88ad-1205811ccf15	314076	Issingerii 10 MG Oral Tablet	0.01	0	371	3,71	59671000	Hypertension
43:34 20	15-02-15716:43:34	38643975-2cd3-4e96-6814-40te9e7a9655	48711845-a6a8-3c28-6242-14d25ef86a8d	2791eb8a-2562-b42f-88ad-1206811ccf15	308136	amLODIPine 2.5 MG Oral Tablet	0.01	0	371	3.71	59621000	Hypertension
43-34 20	16-02-21716:43:34	38643975-2cd3-4e96-6814-40ta8a7a9655	b1c428d8-4r07-31e0-90%-68tte6#8c76	3c81eb90-4/28-6737-435b-0ee290b740ea	1040625	Acetaminophen 325 MG / Oxycodone Hydrochloride 10 MG Oral Tablet (Peroscet)	128.94	0	3	389.82		
43-34 20	16-02-21110-43-34	38643975-2cil3-4e96-6814-401#8u7#9655	b1c428d6-4/07-31e0-90%-68ffa6ff8c76	3c8feb90-4/28-6737-435b-0ee295b740ea	314076	Islings/E10 M3 Oral Tablet	0.01	0	371	3.71	59621000	Hypertamaion
43:34 20	16-02-21716-03-34	38643975-2cd2-4e96-6814-40tx9x7x9655	b1c42848-4407-31e0-9040-6886689c78	3c81eb90-4/28-6737-435b-0ee290b740ea	308136	amLCOIPine 2.5 MG Oral Tablet	0.01	0	371	3.71	59621000	Hypertension
43 34 20	17-02-26116-43-34	38643976-2cd3-4e96-6814-401a9a7a9655	b1c42836-4/07-31e0-9010-68/fa6/f6c76	3d72fb6c-2394-21c5-265a-237bb2298648	1049625	Acetaminophen 325 MG / Oxycodone Hydrochloride 10 MG Oral Tablet (Percocet)	128.94	0	3	389.82		
43:54 20	17-02-26116:43:34	38642975-2cd2-4e96-6814-40ta0a7a9655	b1c428d8-4r07-31e0-9090-68tta6#8c76	3872956-2394-2165-265a-257662298848	314076	lisinopril 10 MG Oral Tablet	0.01	0	371	3.71	59621000	Hypertension

Fig. 6 Medication table sample data view

Prod	cedur	es						
Catalogs + Ns_healthcare								I Create +
Owner:	Popularity:	Size: 1013.7KB, 2 files. Last Updated: 10 months ago						
Comment.								
Columna Sample Data	Details Permissions	History Lineage Insights Quality						
START	STOP	PATIENT	ENCOUNTER	CODE	DESCRIPTION	BASE_COST	REASONCODE	REASONDESCRIPTION
2020-09-30707:55:31	2020-09-30708-10:31	e14ee90a-e822-e800-b7b3-a0b00ee25149	3a1a5622-70bd-aecc-09b8-c67c62fbc7c2	430193006	Medication Reconciliation (procedure)	339.42		
2021-10-06107:55:31	2021-10-06708-10:31	e14ee90a-e822-e800-b7b3-a0b00ee25149	#a2f6a9c-6279-c881-f19f-8bfcc6951472	430193006	Medication Reconciliation (procedure)	500.01		
2020-08-23112:58:07	2020-08-23113:13:07	99beafca-17e6-a702-5d44-3a93be06ae3a	34537432-4c39-0026-c713-a7af4a371c27	430193006	Medication Reconciliation (procedure)	303.86		
2021-08-29712-58-07	2021-08-29713:13:07	99beafca-17e6-a703-5d44-3a93be06ae3a	31faee15-026e-7e4b-f8e1-5bf45b861489	430193006	Medication Reconciliation (procedure)	525.05		
2020-01-10716:24:52	2020-01-10716-39:52	bff02ae2-c396-ff4b-7f7b-065c420bd636	431e8e70-0e26-8df7-f948-f8d51f9b0870	430193006	Medication Reconciliation (procedure)	617.41		
2021-07-09716-53-21	2021-07-09717:10:06	bff02ae2-c396-ff4b-7f7b-065c420bd636	b35e4469-1ed0-67ed-d4cc-01ccBee1ba40	288086009	Suture open wound	6737.66	283371005	Laceration of forearm
2019-04-20109 12:44	2019-04-20709:40:34	cad00c05-9a72-d272-18dc-2f0a77feaa63	e17029a5-04df-2e11-a281-300fdfbf1694	710841007	Assessment of anxiety (procedure)	431.4		
2019-04-20109 12:44	2019-04-20109:27:44	cad00c05-9a72-d272-18dc-2f0a77feaa63	e17029a5-04df-2e11-a281-3001dfbf1694	430193006	Medication Reconciliation (procedure)	493.47		
2019-04-20109:40:34	2019-04-20109-50-42	cad00c05-9a72-d272-18dc-2f0a77feaa63	e17029a5-04df-2e11-a281-3001dfbf1694	171207006	Depression screening (procedure)	431.4		
2019-04-20109:50:42	2019-04-20710:15:27	cad00c05-9a72-d272-18dc-2f0a77feaa63	e17029a5-04df-2e11-a281-3001dfbf1694	715252007	Depression screening using Patient Health Questionnaire Nine Item score (procedure)	31.84		
2019-04-20710 15:27	2019-04-20710-28:15	cad00c05-9a72-d272-18dc-2f0a77feaa63	e17029a5-04df-2x11-a281-300tdfbf1694	428211000124100	Assessment of substance use (procedure)	431.4		
2019-04-20710-28-15	2019-04-20710-47:22	cad00c05-9a72-d272-18dc-2f0a77feaa63	e17029a5-04df-2e11-a281-3001dfbf1694	868187001	Assessment using Car Relax Alone Forget Friends Trouble Screening Test (procedure)	431.4		
2019-04-20110:47:22	2019-04-20711/01:16	cad00c05-9a72-d272-18dc-2f0a77feaa63	e17029a5-04df-2e11-a281-300fdfbf1694	386516004	Anticipatory guidance (procedure)	431.4		
2019-04-2810112:44	2019-04-28101:36:14	cad00c05-9a72-d272-18dc-2f0a77feaa63	1cd0a6b2-98ad-0403-3623-dec5d4459543	23426006	Measurement of respiratory function (procedure)	130.49	10509002	Acute bronchitis (disorder)
2019-05-04109 12:44	2019-05-04709:26:46	cad00c05-9a72-d272-18dc-2f0a77feaa63	1cd0a6b2-98ad-0403-3b23-dec5d4459543	171207006	Depression screening (procedure)	431.4		
2019-05-04109 12:44	2019-05-04709-27:44	cad00c05-9a72-d272-18dc-2f0a77feaa63	1cd0a6b2-98ad-0403-3b23-dec5d4459543	430193006	Medication Reconciliation (procedure)	667.49		
2019-05-04109:26:46	2019-05-04709:50:09	cad00c05-9a72-d272-18dc-2f0a77feaa63	1cd0a6b2-98ad-0403-3b23-dec5d4459543	715262007	Depression screening using Patient Health Questionnaire Nine Item score (procedure)	28.3		
2019-05-04T09-50:09	2019-05-04710:02:04	cad00c05-9a72-d272-18dc-2f0a77feaa63	1cd0a6b2-98ad-0403-3b23-dec5d4459543	428211000124100	Assessment of substance use (procedure)	431.4		
2019-05-04710.02:04	2019-05-04710/28:42	cad00c05-9a72-d272-18dc-2f0a77feaa63	1cd0a6b2-98ad-0403-3b23-dec5d4459543	868187001	Assessment using Car Relax Alone Forget Friends Trouble Screening Test (procedure)	431.4		
2019-05-04110:28:42	2019-05-04T10:40:34	cad00c05-9a72-d272-18dc-2t0a77feaa63	1cd0a6b2-98ad-0403-3b23-dec5d4459543	386516004	Anticipatory guidance (procedure)	431.4		

Fig. 7 Procedure table sample data view

	enthetic_patient_data +												-
	hetic_patient_data.allergies 🛆											I	Create ~
Dwner:	Popularity -I Size 22.6K8, 1 file Las	t Updated: 10 months ago											
ags: Add tags													
Comment:	astalla Permissione History Lineage	valatta Quality											
columns Sample Data	setans Permissions History Lineage	vergers Quarty											
START ST	OP PATIENT	ENCOUNTER	CODE	SYSTEM	DESCRIPTION	TYPE	CATEGORY	REACTION 1	DESCRIPTION1	SEVERITY1	REACTION2	DESCRIPTION2	SEVERITY2
2012-06-25100:00:05	99beafca-17e6-a703-5d44-3a93be06ae3a	9a7522c1-da1d-e376-effe-80b3f74f1744	84499003	Unknown	Mold (organism)	allergy	environment	267101005	Nose running	MILD	21626009	Allergic skin rash	MILD
2012-06-25700:00:00	998wafca-1766-a703-6d44-3a93be06ae3a	9a7522c1-da1d-e376-effe-80b3f74f1744	260147004	Unknown	House dust mite (organism)	allergy	environment						
2012-06-25700:00:00	99beatca-17e6-a703-6d44-3a93be06ae3a	9a7522c1-da1d-e376-effe-80b3f74f1744	264287008	Unknown	Animai dander (substance)	allergy	environment	878820003	Rhinoconjunctivitis (disorder)	MODERATE	271807003	Eruption of skin (disorder)	MILD
2012-06-25700:00:00	99beatca-17e6-a703-5d44-3a93be06ae3a	9a7522c1-da1d-e376-effe-80b3f74f1744	256277009	Unknown	Grass pollen (substance)	allergy	enviranment						
2012-06-25100:00:00	99beafca-17e6-a703-5d44-3a93be08ae3a	9a7522c1-da1d-e376-effe-80b3f74f1244	782576004	Unkryphin	Tree pollen (substance)	atlergy	environment.						
2012-06-25100:00:00	99beatca-17e6-a703-5d44-3a93be06ae3a	9a7522c1-da1d-e376-effe-80b3f74t1744	29046	Unknoven	Lisinopril	intolerance	medication	49727002	Cough (finding)	MODERATE	237849008	Drug-induced hyperkalemia (disorder)	MODERATE
2012-06-25100:00:00	99beafca-17e6-s703-5d44-3a93be06ae3a	9a7522c1-da1d-e378-effe-80b3f74f1744	256355007	Unknown	Soya bean (substance)	allergy	food	62315008	Diarrhea (finding)	MILD			
2012-06-25700:00:00	99beatca-17e6-s703-5d44-3a93be06as3a	9a7522c1-da1d-e375-effe-80b3f74f1744	735029006	Unknown	Shelfish (substance)	allergy	food	402387002	Allergic angloedema (disorder)	MODERATE	49727002	Cough (finding)	MILD
1995-09-29100:00:00	38643975-2cd3-4e86-6814-40fa9a7a9655	1e3477c7-8bcf-d563-241c-63d2ecf3ff25	84489001	Unknown	Mold (organism)	allergy	environment	21626009	Allergic skin rash	MILD			
1995-09-29700-00:00	38643975-2cd3-4e96-6814-40fa9a7a9655	1e3477c7-8bcf-d563-241c-63d2ecf3ff25	762952008	Unknown	Peanut (substance)	allergy	food	402387002	Allergic angloedema (disorder)	MODERATE	300359004	Finding of vomiting (finding)	MILD
1987-09-27100:00:00	7e6432a2-4653-3b12-0847-d6c72fcf430d	2ce57c03-a387-789a-e21a-af46d61f640a	111088007	Unknown	Latex (substance)	allergy	environment	247472004	Wheal (finding)	MILD			
1987-09-27100:00:00	7e6432a2-4553-3b12-0847-d0c72fc1430d	2ce57c03-a287-789a-e21a-af48d81f840a	84489001	Unknown	Mold (organism)	abergy	environment	267101005	Nose running	MLD			
1987-09-27100-00-00	7e6432a2-4553-3b12-0847-d6c72fc1430d	2ce57c03-a387-789a-e21a-af48d61f840a	264287008	Unknown	Animal dander (substance)	allergy	environment	876820003	Rhinoconjunctivitis (disorder)	MODERATE	271807003	Eruption of skin (disorder)	MILD
1987-09-27100-00-00	7e6432a2-4553-3012-0847-06c72fc1430d	2ce57c03-a387-789a-e21a-af46d61/840a	256277009	Unknown	Grass pollen (substance)	allergy	environment						
1987-09-27700-00-00	7e6432a2-4553-3b12-0847-d6c72fc1430d	2ce57c03-a387-789a-e21a-a148d611840a	782576004	Unknown	Tree pollen (substance)	allergy	environment						
1987-09-27100:00:00	7e6432a2-4553-3b12-0847-d6c72tc1430d	2ce57c03-a387-789a-e21a-af48d61f840a	735029006	Linknown	Shelfish (substance)	allergy	food	39579001	Anaphylaxis (disorder)	SEVERE	271807003	Eruption of skin (disorder)	MODERATE
1987-09-27100:00:00	7e6432a2-4553-3b12-0847-d6c72fc1430d	2ce57c03-a387-789a-e21a-at48d61t840a	735971005	Unkinown	Fish (substance)	abergy	feod	271807003	Eruption of skin (disorder)	MILD			
2012-03-28100:00:00	31ebe657-6dda-321b-a9fe-cc5d4ce70cd0	2274d22a-510b-9bb0-c64e-4bb51bf85e5c	10831	Unknown	Sulfamethosazole / Trimothoprim	allergy	medication	271807003	Eruption of skin (disorder)	MODERATE	247472004	Wheal (finding)	MODERATE
1995-02-21100:00:00	27ba5169-cc0f-778c-cfc0-1eaf8f2xl1451	b6f767ad-6f1f-ee65-6d3b-5e434a82af78	735029006	Unknown	Shellfish (substance)	abergy	food	39579001	Anaphyliaxix (disorder)	SEVERE	402387002	Allergic angioedema (disorder)	MODERATE
2015-09-12700:00:00	b29cc989-0d8c-7044-beef-dfed0ea08829	d8b35738-f74b-d2b0-ac21-dc6255806c0c	84489001	Unknown	Mold (organism)	allergy	environment						

Fig. 8 Allergy table sample data view

	izations				
Catalogs > his_healthcare > synthetic	c_patient_data > _patient_data.immunizations A				Create v
Owner: a	Popularity: all Size: 267.2KiB, 1 file Last Updated: 10 months ago				E Ciente +
Tags: Add tags					
Comment: Add comment					
Columns Sample Data Details	Permissions History Lineage Insights Quality				
DATE	PATIENT	ENCOUNTER	CODE	DESCRIPTION	BASE_COST
2019-09-25T07:55-31	e14ee90a-e822-e800-b7b3-a0b00ee25149	34125417-3d41-e1ed-0036-fd958b2094e8	21	varicella	136
2019-09-25107:55-31	e14ee90a-e822-e800-b7b3-a0b00ee25149	34125417-3041-e1ed-0036-fd958b2094e8	10	IPV	136
2019-09-25107:55:31	e14ee90a-e822-e800-b7b3-a0b00ee25149	34/254/7-3d41-e1ed-0036-fd958b2094e8	140	influenza seasonal iniectable preservative free	136
2019-09-25707:55:31	e14ee90a-e822-e800-b7b3-a0b00ee25149	34f254f7-3d41-e1ed-0036-fd958b2094e8	20	DTaP	136
2019-09-25707:55:31	e14ee90a-e822-e800-b7b3-a0b00ee25149	34f254f7-3d41-e1ed-0036-fd958b2094e8	3	MMR	136
2020-09-30T07:55:31	e14ee90a-e822-e800-b7b3-a0b00ee25149	3a1a5622-70bd-aecc-09b8-c67c62fbc7c2	140	Influenza seasonal injectable preservative free	136
2021-10-06T07:55:31	e14ee90a-e822-e800-b7b3-a0b00ee25149	ea2/6a9c-6279-c881-f19f-8bfcc6951472	140	Influenza seasonal iniectable preservative free	136
2019-08-18T12:58:07	99beafca-17e6-a703-5d44-3a93be06ae3a	a282ad01-5165-ded2-2884-0f67af19a375	140	Influenza seasonal injectable preservative free	136
2020-08-23T12:58:07	99beafca-17e6-a703-5ci44-3a93be06ae3a	34637432-4c39-0025-c713-a7af4a371c27	140	Influenza seasonal injectable preservative free	136
2021-04-18T12:58:07	99beafca-17e6-a703-5d44-3a93be06ae3a	cf743b8e-4943-d422-6e80-3bb42efe47f0	140	influenza seasonal injectable preservative free	136
2020-01-10T16:24:52	bff02ae2-c396-ff4b-7f7b-065c420bd636	431e8e70-0e26-8df7-f948-f8d51f9b0870	140	Influenza seasonal injectable preservative free	136
2021-01-15716:24:52	bff02ae2-c396-ff4b-7f7b-065c420bd636	f10cf59e-0a0b-dfc8+e647-29e928e221c4	115	Tdap	136
2021-01-15T16:24:52	bff02ae2-c396-ff4b-7f7b-065c420bd636	f10cf59e-0a0b-dfc8+e647-29e928e221c4	140	Influenza seasonal injectable preservative free	136
2021-01-15T16:24:52	bff02ae2-c396-ff4b-7f7b-065c420bd636	f10cf59e-0a0b-dfc8-e647-29e928e221c4	62	HPV quadrivalent	136
2021-01-15T16:24:52	bff02ae2-c396-ff4b-7f7b-065c420bd636	f10cf59e-0a0b-dfc8-e647-29e928e221c4	114	meningscoccal MCV4P	136
2019-04-20T09:12:44	cad00c05-9a72-d272-18dc-2f0a77feaa63	e17029a5-04df-2e11-a281-300fdfbf1694	140	Influenza seasonal injectable preservative free	136
2020-04-25T09:12:44	cad00c05-9a72-d272-18dc-2f0a77feaa63	ad5a8d8d-3444-284e-0faa-8a74d71523d1	140	Influenza seasonal injectable preservative free	136
2021-05-01T09:12:44	cad00c05-9a72-d272-18dc-2f0a77feaa63	b8d692f1-9059-4893-a4f7-98d2d6bcdc23	140	Influenza seasonal injectable preservative free	136
2021-05-01T09:12:44	cad00c05-9a72-d272-18dc-2f0a77feaa63	b8d692f1-9059-4893-a4f7-98d2d6bcdc23	114	meningococcal MCV4P	136
2021-05-22109:12:44	cad00c05-9a72-d272-18dc-2f0a77feaa63	134b5a5a-414b-3d84-981e-4be8f81c22bf	208	SARS-COV-2 (COVID-19) vaccine mRNA spike protein LNP preservative free 30 mcg/0.3mL dose	136

Fig. 9 Immunizations table sample data view

Organizatior										
JIganization	15									
Catalogs > his_healthcare > synthetic_patient_data >	organizations									Create -
	Size: 123.8KiB, 1 file Last Updated: 10 months ago									: Cranic Con
Tags: Add tags										
Comment: All second										
Columns Sample Data Details Permissions	History Lineage Insights Quality									
м	NAME	ADDRESS	CITY	STATE	ZIP	LAT	LON	PHONE	REVENUE	UTILIZATION
ef58ea08-d883-3957-8300-150554edc8tb	HEALTHALLIANCE HOSPITALS INC	60 HOSPITAL ROAD	LEOMINSTER	MA	01453	42.520838	-71.770876	9784662000	0	1017
69176529-fd1f-3b3f-abce-a0a3626769eb	MOUNT AUBURN HOSPITAL	330 MOUNT AUBURN STREET	CAMERIDGE	ма	02138	42.375967	-71.118275	6174923500	0	2860
5e76512b-e908-3888-9fc7-df2cb87beb58	STURDY MEMORIAL HOSPITAL	211 PARK STREET	ATTLEBORO	ма	02703	41.931653	-71.294503	5082225200	0	1370
f1fbcbfb-fcfa-3bd2-b7f4-df20f1b3c3a4	LAWRENCE GENERAL HOSPITAL	ONE GENERAL STREET	LAWRENCE	MA	01842	42.700273	-71.161357	9786834000	0	1934
e002090d-4e92-300e-b41e-7d1f21dee4c6	CAMBRIDGE HEALTH ALLIANCE	1493 CAMBRIDGE STREET	CAMERIDGE	MA	02138	42.375967	-71.118275	6176652300	0	2933
e16ab57c-ed94-3dbe-9861-812d515918b3	CAPE COD HOSPITAL	88 LEWIS BAY ROAD	HYANNES	MA	02601	41.748854	-70.74053599999998	5087711800	0	1874
49318f80-bd8b-3fc7-a096-ac43088b0c12	COOLEY DICKINSON HOSPITAL INC THE	30 LOCUST STREET	NORTHAMPTON	MA	01060	42.327044	-72.6746300000002	4135822000	0	1342
fbf6180e-b800-3ebe-b91d-93d0288c400e	BAYSTATE FRANKLIN MEDICAL CENTER	164 HIGH STREET	GREENFIELD	MA	01301	42.614671	-72.597063	4137730211	0	402
8b58cdd1-3d79-3128-8fe0-da2c54d6805c	CARNEY HOSPITAL	2100 DORCHESTER AVENUE	BOSTON	MA	02124	42.33196	-71.020173	6175052000	0	729
4bdaa4c2-c664-3089-aee2-7137abbad27f	HARRINGTON MEMORIAL HOSPITAL-1	100 SOUTH STREET	SOUTHBRIDGE	MA	01550	42.069669	-72.03404	5087659771	0	952
ecc51621-0af3-3b35-ac3e-8b1e34022e92	SAINT ANNE'S HOSPITAL	795 MIDDLE STREET	FALL RIVER	MA	02721	41.725351	-71.094162	5086745600	0	2246
5d4b9df1-93ae-3bc9-5680-03249990e558	HOLYOKE MEDICAL CENTER	575 BEECH STREET	HOLYDKE	MA	01040	42.211656	-72.642448	4135342500	0	1704
37b4d73f-652d-3033-a16e-d97b9e8b4cda	ANNA JAQUES HOSPITAL	25 HIGHLAND AVENUE	NEWBURYPORT	MA	01950	42.812141	-70.886646	9784631000	0	1428
5844ad77-f653-3c2b-b7dd-e97576ab3b03	BAYSTATE WING HOSPITAL AND MEDICAL CENTERS	40 WRIGHT STREET	PALMER	ма	01069	42.187794	-72.30846899999997	4132837651	0	687
08bcda9c+8c8-3244-82d4-fc306a7a55d3	BOSTON MEDICAL CENTER CORPORATION-	1 BOSTON MEDICAL CENTER PLACE	BOSTON	MA	02118	42.33196	-71.020173	6176388000	0	350
37c0de84-bcaf-3624-82bf-a89b2ac441b8	BEVERLY HOSPITAL CORPORATION	85 HERRICK STREET	BEVERLY	MA	01915	42.556659	-70.84496	9789223000	0	791
4861d01f-019c-3dac-a153-8334a50919f9	NORTH SHORE MEDICAL CENTER -	81 HIGHLAND AVENUE	SALEM	MA	01970	42.50128	-70.897502	9787411215	0	1730

Providers											
his_healthcare.synthetic_patient_data	providers 🛆										E Create -
Owner: Popularity:	Size: 416.9KiB, 1 file Last Updated: 10 months ago										
Tags: Add tags											
Comment: Add Connect											
Columns Sample Data Details Permissions	History Lineage Insights Quality										
ы	ORGANIZATION	NAME	GENDER	SPECIALITY	ADDRESS	CITY	STATE	ZIP	LAT	LON	UTILIZATION
a50e352e-3a6c-3ebc-a67b-2b3f0779d160	ef58ea08-d883-3957-8300-150554edc8fb	Reginald Bruen	м	GENERAL PRACTICE	60 HOSPITAL ROAD	LEOMINSTER	MA	01453	42.520838	-71.770876	1017
25d5f653-f41b-3a69-abe3-4797bc15c1d6	69176529-fd1f-303f-abce-a0a3626769eb	Janette Fisher	*	GENERAL PRACTICE	330 MOUNT AUBURN STREET	CAMBRIDGE	MA	02138	42.375967	-71.118275	2860
5d9d26fb-cb90-3a79-9a38-3e6396116a70	5e765f2b-e908-3888-9fc7-df2cb87beb58	Juan Rodarte	м	GENERAL PRACTICE	211 PARK STREET	ATTLEBORO	MA	02703	41.931653	-71.294503	1370
18b24b7c-c442-36d3-9154-8070854d0618	f1fbcbfb-fcfa-3bd2-b7f4-df20f1b3c3a4	Dapty Wyman	5	GENERAL PRACTICE	ONE GENERAL STREET	LAWRENCE	MA	01842	42.700273	-71.161357	1934
b1852ee5-d265-325b-8218-fe5ad93385ad	e002090d-4e92-300e-b41e-7d1f21dee4c6	Caitlyn Medhurst	r	GENERAL PRACTICE	1493 CAMBRIDGE STREET	CAMBRIDGE	MA	02138	42.375967	-71.118275	2933
66db8e09-a966-3a04-9c76-e1149cd25d24	ef6ab57c-ed94-3dbe-9861-812d516918b3	Terrell Fadel	8	GENERAL PRACTICE	88 LEWIS BAY ROAD	HYANNIS	MA	02601	41.748854	-70.7405359999998	1874
59bca99d-518c-38fd-a641-f162d51e3d18	49318/80-bd8b-3fc7-a096-ac43088b0c12	Bernard Carter	м	GENERAL PRACTICE	30 LOCUST STREET	NORTHAMPTON	MA	01060	42.327044	-72.67463000000002	1342
a3bc821e-3603-3b9c-901e-80f575007d7a	fbf6180e-b600-3ebe-b91d-93d0288c400e	Jodie Wintheiser		GENERAL PRACTICE	164 HIGH STREET	GREENFIELD	MA	01301	42.614671	-72.597063	402
a1a27b11-c44c-3d1d-8c81-8728ffa63226	8b56cdd1-3d79-3126-8fe0-da2c54d6805c	Margaret Herzog	F	GENERAL PRACTICE	2100 DORCHESTER AVENUE	BOSTON	MA	02124	42.33196	-71.020173	729
e9508af4-d4eb-3fc7-b62d-59cf99b734af	4bdaa4c2-c664-3089-aee2-7137abbad271	Emilia Jiménez	1	GENERAL PRACTICE	100 SOUTH STREET	SOUTHBRIDGE	MA	01550	42.059669	-72.03404	952
aedd6609-1d27-3769-941f-4b3e2datcc20	ecc51621-0af3-3b35-ac3e-8b1e34022e92	Cecille Halvorson	F	GENERAL PRACTICE	795 MIDDLE STREET	FALL RIVER	MA	02721	41.725351	-71.094162	2246
639fcdbc-3b77-3ee9-9f8f-cc8540b417a7	5d4b9df1-93ae-3bc9-b680-03249990e558	Vicente Kilback	м	GENERAL PRACTICE	575 BEECH STREET	HOLYOKE	34A	01040	42.211656	-72.642448	1704
878cec66-be98-351a-8c21-5068a004fac1	37b4d73f-652d-3033-a16e-d97b9e8b4cda	Tracy Spencer	7	GENERAL PRACTICE	25 HIGHLAND AVENUE	NEWBURYPORT	MA	01950	42.812141	-70.886646	1428
4318da92-b363-3b29-a641-31a5ae19b8ab	5844ad77-f653-3c2b-b7dd-e97576ab3b03	Franktin Bayer	м	GENERAL PRACTICE	40 WRIGHT STREET	PALMER	54A	01069	42.187794	-72.30846899999997	687
9e79ab65-e725-3c45-81ce-06b303d5ca9d	08bcda9c-18c8-3244-82d4-fc306a7a55d3	Jesus Crona	м	GENERAL PRACTICE	1 BOSTON MEDICAL CENTER PLACE	BOSTON	MA	02118	42.33196	-71.020173	350
96fba48b-0191-3eea-a2dc-22951afa9370	37c0de84-bcaf-3624-82bf-a89b2ac441b8	Dinah Schaefer	*	GENERAL PRACTICE	85 HERRICK STREET	BEVERLY	ма	01915	42.556659	-70.84496	791
85f63d15-f92f-35cd-864a-cff3ab68c142	4861d01f-019c-3dac-a153-8334e50919f9	Elian Jacobi	F	GENERAL PRACTICE	81 HIGHLAND AVENUE	SALEM	MA	01970	42.50128	-70.897502	1730
f008ec0d-2784-3ee3-806c-d107a8ef3f87	a0b6ec0c-e587-3b2a-bf9f-248849f29ee5	Edmundo Leffier	м	GENERAL PRACTICE	736 CAMBRIDGE STREET	BRIGHTON	ма	02135	42.33196	-71.020173	282
2967d27f-3649-3cff-9873-ce133810b317	4f3a530e-a2f7-3de0-9a09-c0a70a9ab894	Russel Walker	м	GENERAL PRACTICE	725 NORTH STREET	PITTSFIELD	ма	01201	42.452045	-73.26054	968
5c15c50a-e4cc-3d95-82df-50988ee7688e	171ce1a9-cca7-3295-9a1e-c88ac3479b61	Marvin Glover	м	GENERAL PRACTICE	157 UNION STREET	MARLBOROUGH	MA	01752	42.349617	-71.547214	970

Fig. 11 Providers table sample data view

Care F	Plans
--------	-------

Catalogs + his healthcare + synthetic patient data +	8							
His_healthcare.synthetic_patient_dat								Create
Owner: Popularity:	Il Size: 244.6KiB, 1 file Las	t Updated: 10 months ago						
Tags: Add tags								
Comment: And comment								
Columns Sample Data Details Permissions	History Lineage In	sights Quality						
ld	START	STOP	PATIENT	ENCOUNTER	CODE	DESCRIPTION	REASONCODE	REASONDESCRIPTION
7cc3b6f8-3794-6089-1c36-034369f2bdb9	2012-06-11T00:00:00		99beafca-17e6-a703-5d44-3a93be06ae3a	4b1c811c-349c-d402-fe7f-0fc370ecf25a	384758001	Self-care interventions (procedure)		
3443097e-54dd-784a-df01-13541da63510	2013-02-12T00:00:00		99beafca-17e6-a703-5d44-3a93be06ae3a	3708ec25-d787-b33c-9cc1-13f0a897faa2	711282006	Skin condition care	24079001	Atopic dermatitis
02e55022-dcf3-cd28-4335-a4341d77e311	2021-07-09T00:00:00	2021-07-29T00:00:00	bff02ae2-c396-ff4b-7f7b-065c420bd636	b35e4469-1ed0-67ed-d4cc-01cc8ee1ba40	225358003	Wound care	283371005	Laceration of forearm
8b6ad8e5-262b-f0bf-ee6f-22ef3690a7ba	2019-04-27T00:00:00	2020-04-25T00:00:00	cad00c05-9a72-d272-18dc-2t0a77feaa63	1cd0a6b2-98ad-0403-3b23-dec5d4459543	53950000	Respiratory therapy		
9908bbcd-3f23-2d77-0d46+5b8850f6a969	2018-09-28T00:00:00	2019-03-30700:00:00	bb701f5b-cc21-bfc7-fdb7-defb103cbbe9	b4bfde5c-cd27-b9f8-cc60-f899081405d6	53950000	Respiratory therapy		
adde71d7+50d5-7410-d3ef-f1552a8f5565	2019-07-09T00:00:00	2019-08-15T00:00:00	10247fa0-6902-003a-fea8-e4ee6e0b9821	78016e24-880f-1b1a-3e0a-795f93a5e534	47387005	Head injury rehabilitation	62564004	Concussion with loss of consciousness
fdb1e9ce-5dc7-ac7a-1753-8c7ec183014f	2020-12-21T00:00:00	2020-12-21T00:00:00	a627955c-10b0-737e-88c2-e635dbf73511	8808d7d0-fa21-cac4-9f6a-975758b13099	736376001	Infectious disease care plan (record artifact)		
56132226-16c0-59d8-8c93-dee24f059a74	1995-09-11T00:00:00		38643975-2cd3-4e96-6814-40fa9a7a9655	419526d2-9825-0553-bc19-34e82d37640d	384758001	Self-care interventions (procedure)		
1df92f5c-d153-2d3b-7410-61998e1f08f5	2013-02-03T00:00:00		38843975-2cd3-4e96-6814-40fa9a7a9655	419adfd9-6dc7-ca03-b604-536b4f9aa2c8	443402002	Lifestyle education regarding hypertension	59621000	Hypertension
5662b0c5-d67b-ce57-c14c-f577f4022cf5	2018-08-19T00:00:00	2019-04-07T00:00:00	38643975-2cd3-4e96-6814-40fa9a7a9655	0d40b4e1-a2c7-164d-7578-d1fd4f26b633	134435003	Routine antenatal care		
9422818c-7942-e8c3-4694-84677dac8797	2019-12-29T00:00:00	2020-07-12700-00:00	38843975-2cd3-4e96-6814-40fa9a7a9655	2f2a7180-af29-9ab7-5f82-f3ed09bb0ceb	134435003	Routine antenatal care		
08dd00fc-b5e1-0269-2b47-beb82a319a22	2020-05-01T00:00:00	2021-03-21100:00:00	38643975-2cd3-4e96-6814-40fa9a7a9655	b0e18e67-16td-c48a-7495-87fa63cb590f	53950000	Respiratory therapy		
ae976d40-1e27-ea5d-581b-6743e44795c3	2012-01-22T00:00:00		5cd74a6f-b0b7-7662-2bd6-c955b57318a8	2447b9cb-d560-949c-0b9d-afc371a2c3ca	386522008	Overactivity/inattention behavior management		
e45571d6-2b91-9783-b42d-2bcbf85a79e1	2021-04-25T00:00:00	2021-04-25T00:00:00	5cd74a61-b0b7-7662-2bd6-c955b57318a8	2d72f5ac-e869-30db-7dac-b43c6df27068	736376001	Infectious disease care plan (record artifact)		
27c119bc-48f5-0c1d-3e85-f96f3e6cffaa	2021-04-25T00:00:00	2021-05-24T00:00:00	5cd74a6f-b0b7-7662-2bd6-c955b57318a8	2d72f5ac-e869-30db-7dac-b43c6df27068	736376001	Infectious disease care plan (record artifact)		
498807a0-bbe3-a478-2982-fda71a2be464	1987-09-16100:00:00		7e6432a2-4553-3b12-0847-d6c72tcf430d	544a7953-cc5f-bbb1-c119-02fe394d10db	384758001	Self-care interventions (procedure)		
dc44a8d4-c458-e48a-d4ea-251c51d695a4	2019-05-05T00:00:00	2019-05-29T00:00:00	7e6432a2-4553-3b12-0847-d6c72fcf430d	65929d59-7565-0802-70a1-5ba71205b633	773513001	Physiotherapy care plan (record artifact)	70704007	Sprain of wrist
dbc169fe-dc80-88ce-369c-e2ee8c483de0	1967-11-19700:00:00	1967-12-09100:00:00	7b33e063-8557-18b9-1c88-14f116984069	c70ad426-0252-29d0-7c55-894acf7t64b5	53950000	Respiratory therapy		
a33d231b-62e3-cbf9-2019-833d743637d8	1984-03-03T00:00:00		7b33e063-8557-18b9-1c88-14f116984069	675e51d6-3b08-62f0-cc0e-27a0e2562326	698360004	Diabetes self management plan	15777000	Prediabetes
efb6ca53-5501-70ec-9009-862e50abc862	1989-09-15T00:00:00	1990-03-10700:00:00	7b33e063-8557-18b9-1c88-14f116984069	4bb31122-579e-3ed4-2d5b-80cf315ab83b	53950000	Respiratory therapy		

Fig. 12 Care plans table sample data view

Imaging_studies

Owner	Popularity:	Size: 1003KiB, 6 files Last Updated: 10 months a	100							
ags: Add	I tags									
omment										
Columns	Sample Data Details Permissions	History Lineage Insights Quality								
EN	ICOUNTER	SERIES_UID	BODYSITE_CODE	BODYSITE_DESCRIPTION	MODALITY_CODE	MODALITY_DESCRIPTION	INSTANCE_UID	SOP_CODE	SOP_DESCRIPTION	PROCEDURE_COD
:3ed 5b	f48cc4-1a09-cd16-ad75-ee5fb64e5558	1.2.840.99999999.1.96632846.1630375715581	8205005	Wrist	DX	Digital Radiography	1.2.840.99999999.1.1.93544463.1630375715581	1.2.840.10008.5.1.4.1.1.1.1	Digital X-Ray image Storage	60027007
1914 fel	4ad213-24fc-b793-948d-44cb83983feb	1.2.840.99999999.1.83299075.1625052467210	344001	Ankle	DK	Digital Radiography	1.2.840.99999999.1.1.30012652.1625052467210	1.2.840.10008.5.1.4.1.1.1.1	Digital X-Ray Image Storage	19490002
127e 0a	55397e-5dd9-cd3e-160d-44c96ccb3dfd	1.2.840.99999999.1.83242088.1583219270637	51185008	Thoracic structure (body structure)	CR	Computed Radiography	1.2.840.99999999.1.1.90917181.1583219270637	1.2.840.10008.5.1.4.1.1.1.1	Digital X-Ray Image Storage - for Presentation	399208008
127e 6c	b5c5c9-9b29-1457-9fb3-5f56793332c1	1.2.840.99999999.1.27295332.1584862384637	80891009	Heart structure (body structure)	US	Ultrasound	1.2.840.99999999.1.1.12761408.1584862384637	1.2.840.10008.5.1.4.1.1.3.1	Ultrasound Multiframe Image Storage	40701008
127e 64	667d8e-3b00-24d4-905d-64b2c33b92H	1.2.840.99999999.1.37640945.1600414384637	51185008	Thoracic structure (body structure)	CR	Computed Radiography	1.2.840.99999999.1.1.32350837.1600414384637	1.2.840.10008.5.1.4.1.1.1.1	Digital X-Ray Image Storage – for Presentation	399208008
65 57	5681bc-1822-c335-412a-b7fe5a1d8cba	1.2.840.99999999.1.69181415.1578839922779	344001	Ankle	DK	Digital Radiography	1.2.840.99999999.1.1.71863345.1578839922779	1.2.840.10008.5.1.4.1.1.1.1	Digital X-Ray Image Storage	19490002
7f5 d8	id68c5d-c05c-73ff-223a-6f6255c5bc12	1.2.840.99999999.1.21829527.349029443647	344001	Ankle	DK	Digital Radiography	1.2.840.99999999.1.1.80904624.349029443647	1.2.840.10008.5.1.4.1.1.1.1	Digital X-Ray Image Storage	19490002
715 70	0926b8-a3a6-4a68-53d2-18b95053d001	1.2.840.99999999.1.61053652.1626077168353	51299004	Clavicle	DK	Digital Radiography	1.2.840.99999999.1.1.49650249.1626077168353	1.2.840.10008.5.1.4.1.1.1.1	Digital X-Ray Image Storage	168594001
7774 dfs	c5308c-b2bd-a44f-7867-eb6097581df4	1.2.840.99999999.1.28383082.1607841576329	12921003	Pelvis	DK	Digital Radiography	1.2.840.99999999.1.1.61539519.1607841576329	1.2.840.10008.5.1.4.1.1.1.1	Digital X-Ray Image Storage	268425006
:74 74	e609a5-dcb6-c667-56e2-fa0216a3fd92	1.2.840.99999999.1.37091202.1628573391138	51299004	Clavicle	DK	Digital Radiography	1.2.840.99999999.1.1.55949286.1628573391138	1.2.840.10008.5.1.4.1.1.1.1	Digital X-Ray Image Storage	168594001
he5 b7	65396e-371e-d43a-554c-b06baedae4c8	1.2.840.99999999.1.95471419.1580874890021	8205005	Wrist	DK	Digital Radiography	1.2.840.99999999.1.1.20635974.1580874890021	1.2.840.10008.5.1.4.1.1.1.1	Digital X-Ray Image Storage	60027007
937 93	1592b1b-3cbb-8e7f-5d39-2bc945e3c288	1.2.840.99999999.1.30844373.1581932073529	40983000	Arm	DK	Digital Radiography	1.2.840.99999999.1.1.29343866.1581932073529	1.2.840.10008.5.1.4.1.1.1.1	Digital X-Ray Image Storage	1225002
rle 96	i610558-d4e3-7ffc-de78-b16e9dbf6c0a	1.2.840.99999999.1.17245672.1613131666622	51299004	Clavicle	DK	Digital Radiography	1.2.840.99999999.1.1.30270216.1613131666622	1.2.840.10008.5.1.4.1.1.1.1	Digital X-Ray Image Storage	168594001
3191 20	Idd7d48-11e3-b0c6-6b9b-8bc4c28e4e79	1.2.840.99999999.1.30559622.1118601295964	8205005	Wrist	DK	Digital Radiography	1.2.840.99999999.1.1.60606091.1118601295964	1.2.840.10008.5.1.4.1.1.1.1	Digital X-Ray Image Storage	60027007
86e 2d	1483ce9-04b9-b7f5-1402-fadd2bc6712c	1.2.840.99999999.1.88584859.1633913068022	344001	Ankle	DK	Digital Radiography	1.2.840.99999999.1.1.92962245.1633913068022	1.2.840.10008.5.1.4.1.1.1.1	Digital X-Ray Image Storage	19490002
dac 8d	196198e-a98b-5db5-3ded-e6cb402f0b3d	1.2.840.99999999.1.49694625.1151854214565	51185008	Thoracic structure (body structure)	CT	Computed Tomography	1.2.840.99999999.1.1.64552979.1151854214565	1.2.840.10008.5.1.4.1.1.2	CT Image Storage	16335031000119
fac 8d	196198e-a98b-5db5-3ded-e6cb40210b3d	1.2.840.99999999.1.49694625.1151854214565	51185008	Thoracic structure (body structure)	СТ	Computed Tomography	1.2.840.99999999.1.2.25641217.1151854214565	1.2.840.10008.5.1.4.1.1.2	CT Image Storage	16335031000119
dac 8d	196198e-a98b-5db5-3ded-e6cb40210b3d	1.2.840.99999999.1.49694625.1151854214565	51185008	Thoracic structure (body structure)	CT	Computed Tomography	1.2.840.99999999.1.3.56374027.1151854214565	1.2.840.10008.5.1.4.1.1.2	CT Image Storage	16335031000119
dac 8d	196198e-a98b-5db5-3ded-e6cb402f0b3d	1.2.840.99999999.1.49694625.1151854214565	51185008	Thoracic structure (body structure)	CT	Computed Tomography	1.2.840.99999999.1.4.26107843.1151854214565	1.2.840.10008.5.1.4.1.1.2	CT image Storage	16335031000119
idac 8d	000000 -000 Fabr 34-4 -0-5 10000-34	1.2.840.99999999.1.49694625.1151854214565	51185008	Thoracic structure (body structure)	67	Computed Tomography	1.2.840.99999999.1.5.88751035.1151854214565	1 2 840 10008 5 1 4 1 1 2	CT Image Storage	16335031000119

Fig. 13 Imaging_studies sample data view

3. Patient Data Generation Process Flow

3.1. Patient Process Flow

From a patient's perspective, the sample process flow of real-world data generation at the various stages when interacting with health professionals is illustrated below in Figure 14.

3.2. Symptoms Identification at Home

The primary reason patients visit a hospital or a pharmacy is sickness symptoms causing deterioration of health at their respective homes. Hence, the patient leaves home and goes to a doctor or pharmacy to seek medical help.

3.3. Patient Encounter and Registration

Patients interact with doctors when they visit a health facility or pharmacy. The patient's first step of the interaction usually involves surrendering important information such as their name, age, locality, gender, and, other times, contact details. The patients also explain the reason for their visit and some symptoms to offer further direction, all recorded in the patient table of the synthetic dataset.

3.4. Medical History and Underlying Conditions

In this stage, the healthcare provider records the patient's previous medical history, underlying conditions, allergies, family medical histories, previous surgeries, and newly identified conditions. The condition table may record patients' existing or identified conditions.

3.5. Drug Prescription and Pharmacy Visit

After the health provider diagnoses the patient, a treatment plan is usually chosen, mostly by prescribing medicine for the patient. The prescription details are usually recorded, including the name of the medication, its dosage, instructions, and duration. The patient visits a pharmacy outside or within the healthcare center to access the medication. The pharmacist records specific details such as the medication details and date provided. This information concerning medication is recorded in the medication table.

3.6. Laboratory and Diagnostic Tests

Sometimes, laboratory tests are recommended as part of the patient's evaluation process. After the patient has undergone the tests, the test type, values, dates, and results are recorded in the synthetic dataset's observation table and procedures table.

3.7. Follow-Up and Ongoing Care

Usually, doctors recommend follow-up visits to monitor the patient's progress with the prescribed medication. Followup and ongoing care occur after the initial encounter with the healthcare provider. Follow-up visits capture and reveal the patient's progress and possible further intervention. If the doctor identifies deficiencies in the initially prescribed medication, the doctor can recommend a substitute and continue to monitor the patient's progress. These details are recorded in the encounter table of the synthetic dataset.

3.8. Inpatient Visit

Inpatient visits can occur before or after follow-up and ongoing care. After the laboratory and diagnostic tests, the doctor may decide that the patient's condition is severe and requires close monitoring. In such a case, the doctor can recommend admitting the patient. Other times, the patient's condition may deteriorate during the follow-up visits. In such a case, the healthcare provider can also recommend that the patient be admitted and be closely monitored. The patient data flow process initiates and propels the generation of RWD from the patient's point of view. It presents the essential interactions between the patients and the healthcare provider, starting from their first encounter, diagnoses, treatment, prescribed medication, and other important information. This set of RWD provides life sciences organizations and healthcare providers with RWE to analyze and derive insights into different aspects of patient care and the entire performance of the healthcare system.

4. Architecture Diagram and ETL Flow

From the architecture perspective, this EHR data can be loaded into data bricks; below, figure 15 is a sample architecture of the overall data flow.

Fig. 15 Medallion architecture and data flow

Fig. 16 Sample medallion architecture using azure databricks

The above figure indicates the high-level multi-hop architecture and data flow across various layers. The ETL process involves moving the raw data across different layers to ensure the data is valid and conforming to the system's needs. Databricks Lakehouse leverages Medallion Architecture, which helps organize data logically with structures (layers), namely bronze, silver and gold, that improve the data quality over time as it flows through each layer.

The bronze layer plays the most crucial part in the ETL process. It is a structural stage where the data is raw, where all the data is from the outside source land. In the Bronze layer, the data table is commonly structured as the external source (origin), with the table structure able to capture additional metadata columns that show the load date/time, process ID, etc. This layer provides a quick-change data capture with the ability to extract the historical archive sources of the data, known as cold storage. Moreover, it provides data lineage and an extension to data auditability, when necessary, without reading from the source system.[8] Silver layer, also known as cleansed and conformed data. At this layer, the data obtained from the first stage (Bronze) is matched, consolidated, conformed, and cleaned. The main aim of this layer is to ensure that the data captures the real information regarding the subjects of the data for storage, removing duplicates and cross-reference tables of data obtained from the bronze layer.

The Silver layer can provide an "Enterprise view" of all its key business entities, concepts, and transactions. (e.g., master customers, patients, payers, HCPs, non-duplicated transactions, and cross-reference tables). The Silver layer brings the data from different sources into an Enterprise view and enables self-service analytics for ad-hoc reporting, advanced analytics, and ML. It serves as a source for all the data personas to create further projects and analyses to answer business problems via enterprise and departmental data projects in the Gold Layer. Speed and agility to ingest and deliver the data in the data lake are prioritized, and a lot of project-specific complex transformations and business rules are applied while loading the data from the silver to the gold layer.

The figure below illustrates some sample data quality checks that can be performed while moving data from the bronze to the silver layer. This involves Uniqueness checks, which checks for this like Null checks, duplicates, unique column names to avoid conflicts, etc. Data Completeness checks involve Referential integrity checks, e.g., Ensuring every patient has at least one condition recorded or one visit recorded, etc. Consistency involves data type checks ensuring that different columns across different tables are standardized to the same data type and format, etc. Finally, Accuracy can involve customer business rules-related checks that can be embedded to ensure that it meets the required quality and constraints. e.g., the Death Date should not be before the Birth Date, the Visit End date should not be smaller than the Start date, the condition date should not be lesser than the birth date, etc. Since this layer has organized data, it enables data analysis for ad-hoc reporting and improves machine learning. It is a vital source for data engineers and scientists to develop further projects and solve different business problems through data projects in the Gold Layer. [9]

The gold layer is also known as the curated business-level tables. This layer contains the most consumption-ready data, and the information in this layer generally contains business-level metrics and KPIs ready to be consumed by data analysts. E.g., condition level Aggregates, cohort analysis, etc.

Fig. 17 Data quality and profiling

5. Use Deep Case Dive

5.1. Patient Demographics Dashboard and Insights

One of the main use cases that can be derived using RWD data is the creation of various visualizations and dashboards for analytics. [10] One such dashboard can be the patient demographic EHR visualization dashboard. Patients' demographic dashboards transform data into rich and informative visuals that can help provide valuable insights for data-driven decision-making in life sciences companies. These dashboards can help answer various key business questions around patient demographics, market opportunity, and key opinion leaders and ease decision-making for life sciences companies. [11]

The patient demographic dashboard can showcase various aspects of patient information, such as age distribution, gender, location, race, and ethnicity. It aids in answering questions related to healthcare trends, resource allocation, and targeted marketing strategies. For instance, it helps identify age groups requiring medical attention, pinpoint areas with high patient densities, understand ethnic and racial diversity, and analyze gender distribution. Moreover, patient demographic dashboards assist in patient segmentation by age, location, race, and gender. This segmentation enables healthcare and life science organizations to tailor their services and marketing to specific demographic trends. The data can also support creating culturally or demographically appropriate products and services for diverse communities, regional medical campaign targeting, and identifying potential gaps in accessibility to healthcare.

For instance, Distribution by race and ethnicity can be identified using patient demographic dashboards. To provide culturally competent treatment, it is essential to comprehend the ethnic and racial diversity of the patient group. It may additionally reveal differences in healthcare outcomes and access between various ethnic communities. Moreover, it can help allocate physicians and nurses who speak the local languages in each locality to reduce the communication barrier and provide easy access to healthcare.

Another key area to answer some key business questions is market analysis. It can help answer some key business questions like the most common or highly occurring conditions in the market, how many products/drugs/treatment options are available for a specific condition in each market, and the market share of various companies that are addressing similar conditions. Insights like these can help life science companies understand potential strategic market opportunities for investments and drug development. Moreover, it can also help identify key opinion leaders for a specific condition or drug that can help the commercial field teams target that physician for promotions or their education speaker programs accordingly.

Moreover, such dashboards can be shared to promote collaboration among KOLs, speeding up lifesaving discoveries and partnerships, enabling safe and open sharing of information and cooperation with organizations throughout the healthcare ecosystem and potentially enhancing how care is delivered [12]. In summary, leveraging patient demographic dashboards on Databricks allows for comprehensive insights into patient demographics and healthcare trends, aiding in decision-making, resource allocation, and targeted marketing strategies. The unified platform fosters collaboration among stakeholders, leading to improved healthcare services and advancements in research.

Fig. 18 Patient Demographic dashboard created in databricks

5.2 Treatment Rate, Medication Adherence & Treatment Progression Across Lines of Therapies

Another use case with which RWD data can help us understand the prevalence, treatment rate, medication adherence, and treatment progression across multiple lines of therapies for a given condition. Prevalence relates to the total number of individuals in a population who have a disease or health condition at a specific period of time, usually expressed as a percentage of the population. Treatment rate relates to the number of patients identified with a condition and prescribed medication. Medication adherence relates to the degree to which the patient's behavior corresponds with the agreed recommendations from a health care provider.[13].

This critical viewpoint reinforces remedial results, especially for patients influenced by constant conditions. Tracking medical

adherence can reveal factors that promote or discourage patients from adhering to the prescribed medication. Healthcare providers can also track patient outcomes for patients who adhere to medication and those who fail to adhere to the prescribed medicine.

Details on patients' medical adherence can provide insight into strategies for encouraging patients to adhere more to medicine and reveal better methods of encouraging patients to follow the medication given. For instance, one factor influencing medication adherence among patients encompasses knowledge and understanding of the condition, the purpose of the medication, dosage, and possible side effects. [14] Patients with a comprehensive understanding of the medication are likelier to adhere to it.

The best results from medical therapies depend on patient adherence, mainly when several lines of therapy are being used. This is especially true in medical specialities like oncology, where patients frequently receive many lines of therapy; if their disease worsens or initial treatments are unsuccessful, better treatment options can be introduced. [15]

Fig. 19 Image showing sample medication adherence information that can be derived from this data

5.3. Comorbidity Analysis Interactive Dashboards

Another use case for which this real-world data (RWD) can derive insights is for comorbidity analysis. The comorbidity analysis interactive boards offer an interface for analyzing the co-occurrence of multiple health conditions or diseases in a population. This use case is a very common starting point and can help detect at-risk patients. In a clinical setting, we may look at comorbidities as a way to understand the risk of a patient's disease increasing in severity. From a

medical coding and financial perspective, looking at comorbid diseases may allow professionals to identify common medical coding issues that impact reimbursement. In pharmaceutical research, looking at comorbid diseases with shared genetic evidence may give us a deeper understanding of the function of a gene. Moreover, these dashboards allow stakeholders like healthcare systems to visualize and research the relationship between diseases and their most common combinations. [9]. As a result, healthcare professionals and policymakers can acquire actionable insights into the prevalence, interactions, and association between different conditions. They can take some proactive actions to prevent future conditions using precision prevention, which is focused on using data to identify patient populations at risk of developing a disease and then providing interventions that reduce disease risk.

An intervention might include a digital app remotely monitoring at-risk patients, providing lifestyle and treatment recommendations, increasing disease status monitoring, or offering supplemental preventative. Thereby helping improve patients' health.

5.4. Patient Risk Prediction

RWD data can also be used for various data sciencerelated use cases like predictive analytics. One such example is creating a patient risk scoring model using various statistical, data science, and machine learning models that can help predict the risk of specific condition occurrence in a patient.

Fig. 20 Interactive comorbidity analysis

Fig. 21 Patient risk prediction

As shown in the above image (*Figure 21*), the process encompasses analyzing elements such as lifestyle, genetic predisposition, demographic information, and environmental factors to estimate the patients' risk profile.

Healthcare systems can employ predictive models such as algorithms and statistical approaches in determining the patient's risk factors for experiencing a particular health outcome.[16] These techniques can be anchored on machine learning models, regression analysis, and other relevant mathematical approaches. These techniques use historical data to identify patterns and discover relationships between outcomes and risk factors, generating risk predictions for new patients.

5.5. Patient Condition Progression

A comprehensive understanding of a patient's disease progression can guide healthcare providers to gain actionable insights into the behavioral patterns of the ailment.[14] As a result, healthcare professionals can quickly identify similar patterns in other patients, causing better disease diagnosis, treatment, and improvement in disease association.

The healthcare providers also have the chance to identify specific conditions that cause the disease or lead to the further deterioration of the patient's health. These conditions include lifestyle, genetic predisposition, environmental factors, and comorbidities. Identifying such needs offers more precise and practical guidance in treating the patient and deciding further treatment interventions for the disease.

5.6. Prescriber and Patient Lead Identification

Healthcare providers can create such dashboards to help track patient treatment progression. The dashboards can also help track and identify field sales to identify specific field patient and physician leads at a given provider, targeting them accordingly with appropriate educational and promotional content. Thus, lead identification can help providers understand patients' preferences and behavior. This data assists in the identification of potential leads for potential patients for services and products. Such information guides the sales team to target the identified patients appropriately.

6. Data Expansion to Address Additional Comprehensive Use Cases

Integrating EHR data with additional data sources can assist life science companies, policymakers, healthcare professionals, and other related stakeholders understand the prevalence of certain diseases, patient medical adherence, and patient outcomes to propel more effective treatment or medical intervention methods. Below, Figure 24 highlights a few examples of additional data sources, use cases and outcomes.

Fig. 22 Tracking patient disease progression

Track Patient Journey : Sample Patient Treatment Progression Illustrative New Alerts (Within Last 14 Days) Facility Physician All 10-5813441 Age Range : 60-85-Innied She Facility : City Of Hope Arcadia Facility/Phy Last Call to ID Diagnosis Treatment Treatment an Tx Physician Line Status on har chart is shown in Months F Cancer 8 Molthrop 11/05/21 5215206 Breast Cancer ado-trastuzumab 3 Continuing TriLine Start Date End Date TriLine Status (Michiga Alert Date emtansine 10/15/21 LOT 4+ 10/15/21 America do Miranda 08/31/21 5648553 Breast Cancer ado-trastuzumab 3 New Line 08/27/21 LOT 3 01/29/21 08/27/21 Co Garden Start emtansine 12/11/20 LOT 2 12/04/20 12/11/20 🖅 Atlanta C Shen 5813461 Breast Cancer ado-trastuzumab 4+ Continuing Hem/Onc UTCN emtansine ∃ Jackson Oncology Assoc (North State) 6 Ĭ 10/29/21 Honghao Yang 5840063 Not Reported ado-trastuzumab 4+ New Line ion contains only New Alerts within last 14 days Top Regimen/Treatment Line Distribution Age Group Distribution KADCYLA 254 Physician treatment patterns combined with the commercial sales and calls data can help provide salesforce teams with better leads identification and effective product education and training

Fig. 23 Sample patient treatment progression

For instance, incorporating EHR Clinical data with demographic data can help health professionals gain insight into the relationship between patient demographics and specific health outcomes or conditions. Secondly, genomics and precision data can be used in single-cell sequencing to foster innovation for a better customer experience.

Single-cell sequencing models enable the analysis of individual cells, providing detailed insights into cellular heterogeneity, genetic variations, and gene expression profiles.[17] This information provokes a comprehensive understanding of disease mechanisms, identifies biomarkers, and creates personalized patient treatment.

Data recorded in claims can help conduct efficacy and competitive analytics, fostering improved patient outcomes and enhanced Salesforce effectiveness. Claims data can improve treatment outcomes by analyzing healthcare utilization patterns, medical adherence, and healthcare costs associated with specific treatment interventions.

As a result, the effectiveness of different interventions can be determined, and the most effective practices can be identified. This data can also enable easy comparison of other treatment options and assess the efficacy of this treatment intervention in the real world.[17] In competitive analytics, claims data can propel market insights by analyzing utilization patterns, prescribing practices, and treatment outcomes related to different interventions. This data helps to identify market trends, areas of improvement, and competitive positioning.

Medical deep learning with the help of artificial intelligence has been shown to help support medical diagnosis and graphically demanding workloads. Medical deep learning models can evaluate complicated medical images and data to help diagnose and make decisions using machine learning techniques and deep neural networks.

Additionally, analytics for IoT (Internet of Things) devices use sensor data from linked devices to enhance healthcare delivery and revolutionize care quality. Finding deviations from predicted patterns, enabling proactive interventions, and improving care delivery are all possible through anomaly detection.

Lastly, in social analytics, a more profound comprehension of the social and environmental aspects that affect patient health can be achieved by including SDOH data, such as housing conditions, access to transit, food security, or community features.[17] This information can pinpoint interventions, detect socioeconomic discrepancies, and enhance health equity.

Fig. 24 Combining EHR with another data

7. Conclusion

In conclusion, this article sheds light on the enormous opportunity of Real-World data combined with AI and analytics technologies to change healthcare systems and the Research and Development of drugs. The research highlighted how the combination of RWD and advanced analytics platforms like Databricks could result in major gains in care for patients, productivity, and decision-making procedures throughout the healthcare and life science industry by examining several use cases.

The addition of practical options from Databricks Lakehouse has significantly underlined the viability and applicability of these use cases, laying the groundwork for their deployment in real-world circumstances.

Also, Databricks Lakehouse approaches and innovative artificial intelligence may successfully solve existing gaps and inconsistencies in healthcare systems. By utilizing the modern lakehouse platform, healthcare and life science organizations and policymakers may make better choices, optimize resource allocation, improve the patient experience, discover better and more advanced drugs, and consolidate operations, resulting in improved comprehensive healthcare delivery and drug research and development. Therefore, adopting these creative ideas remains increasingly important as the Healthcare and life science business evolves and faces new problems. Efficient use of real-world data and modern technology can offer dramatic benefits, catapulting healthcare systems towards a future of better efficacy, cost-efficiency, and patient-oriented care. Thus, this study strongly argues for integrating RWD, machine learning, Databricks Lakehouse solutions, AI, and data analytics technologies into healthcare and drug research and development. By responsible adoption and adaptation of the above innovations, healthcare and life science players may prepare the path for a more promising and sustainable future in which the capability to fill gaps and errors in medical systems can be realized to the advantage of everyone pursuing high-quality medical care.

Acknowledgement

Author - Mayur Katariya extends his sincere gratitude to Ashish Upadhyay, Director of Field Engineering at Databricks, who asked the author to delve into a comprehensive analysis before joining Databricks that greatly influenced the creation of this article. The author is also indebted to ZS and its leaders for the invaluable professional experience in the Healthcare and Life Science domain, which served as a profound source of inspiration for this article.

References

- [1] How Real-World Evidence Transforms the Entire Healthcare Ecosystem, DXC Technology, 2023. [Online]. Available: https://dxc.com/us/en/insights/perspectives/paper/how-real-world-evidence-transforms-the-entire-healthcare-ecosystem
- [2] Blair Bean Robertson, FDA Advances Program for Real-World Evidence, The Regulatory Review, A Publication of the Penn Program on Regulation, 2023. [Online]. Available: https://www.theregreview.org/2023/02/27/bean-robertson-fda-advances-program-for-realworld-evidence/
- [3] Aldren Gonzales, Guruprabha Guruswamy, and Scott R. Smith "Synthetic Data in Health Care: A Narrative Review," *PLOS Digital Health*, vol. 2, no. 1, 2023. [CrossRef] [Google Scholar] [Publisher Link]
- [4] Jake Gower, Christopher Lundeberg, Databricks and Technology Partners: Personalized Medicine with a Tailored Approach, 2023. [Online]. Available: https://www.databricks.com/blog/databricks-and-technology-partners-personalized-medicine-tailoredapproach#:~:text=Integrating%20Cloud%2DAdjacent%20Technologies&text=Therefore%2C%20medical%20research%20institutions %20can,the%20best%20of%20both%20worlds./
- [5] Synthea/README.md SyntheaTM Patient Generator, synthetichealth/synthea, 2023. [Online]. Available: https://github.com/synthetichealth/synthea/blob/master/README.md
- [6] Andre Goncalves et al., "Generation and Evaluation of Synthetic Patient Data," *BMC Medical Research Methodology*, vol. 20, no. 1, pp.1-40, 2020. [CrossRef] [Google Scholar] [Publisher Link]
- [7] R.N. Matt Vera Bsn, Nursing Care Plans (NCP), Ultimate Guide and List, 2023. [Online]. Available: https://nurseslabs.com/nursing-careplans/
- [8] What is a Medallion Architecture?, Databricks, 2023. [Online]. Available:https://www.databricks.com/glossary/medallion-architecture
- [9] Dennis M. J. van de Sande et al., "A Review of Machine Learning Applications for the Proton MR Spectroscopy Workflow," Magnetic Resonance in Medicine, vol. 90, no. 4, pp. 1253-1270, 2023. [CrossRef] [Google Scholar] [Publisher Link]
- [10] Robby Nieuwlaat et al., "Interventions for Enhancing Medication Adherence," *Cochrane Database of Systematic Reviews*, vol.11, 2014. [CrossRef] [Google Scholar] [Publisher Link]
- [11] Kevin Lee, and Genpact, Patient's Journey Using Real World Data and its Advanced Analytics, 2023. [Online]. Available: https://www.pharmasug.org/proceedings/2023/RW/PharmaSUG-2023-RW-113.pdf
- [12] Bill Zanine, Michael Sanky, and Adam Crown, The future of Healthcare Relies on Data Collaboration: How IQVIA and the Databricks Lakehouse Enable Better Outcomes, 2023. [Online]. Available: https://www.databricks.com/blog/future-healthcare-relies-datacollaboration-how-iqvia-and-databricks-lakehouse-enable-better.
- [13] Wai Yin Lam, and Paula Fresco, "Medication Adherence Measures: An Overview," *BioMed Research International*, vol. 2015, 2015. [CrossRef] [Google Scholar] [Publisher Link]
- [14] Beena Jimmy, and Jimmy Jose, "Patient Medication Adherence: Measures in Daily Practice," Oman Medical Journal, vol. 26, no. 3, pp. 155-159, 2011. [CrossRef] [Google Scholar] [Publisher Link]
- [15] Databricks for the Life Sciences Industry, Databricks, 2023. [Online]. Available: https://www.databricks.com/solutions/industries/life-sciences-industry-solutions
- [16] Erin McNemar, What are the Benefits of Predictive Analytics in Healthcare?, HealthITAnalytics, 2022.[Online]. Available: https://healthitanalytics.com/news/what-are-the-benefits-of-predictive-analytics-in-healthcare
- [17] R. Anjit raja, B. Nagarajan, and R. Dhanappriya, "Byzantine Neurobiological Phenomenon Analysis and Factors Prediction for Social Network based Adult's Suicides and Cyber Dismay by Hypercritical Machine Learning Techniques," SSRG International Journal of Computer Science and Engineering, vol. 4, no. 4, pp. 24-29, 2017. [CrossRef] [Publisher Link]